# Computational Art: No 1

## 2017/11/06

### Summary

This post is inspired by the work of Antonio Sánchez Chinchón, and his original post on Clifford Attractors.

In a nutshell I wanted to replicate his approach whilst making three clear deviations, namely:

1. using base R instead of optimised Rcpp (C++) code for the computation
2. randomise the parameters to create an “infinite” number of outcomes
3. save this output into many tiles

### Background and Theory

Clifford attractors are infinite attractors described by 4 parameters (a, b, c, d) and 2 equations. Starting with an initial value for two values X and Y one computes the next starting point-pair. Thus the computation is sequential and this means generating point-pairs or trajectories from the previous outcome.

I chose a basic looping approach to fill a data frame of 1 million point-pairs.

The approach has several steps:

1. Define the global parameters (how many points to generate, how many iterations to run)

2. Wrap the below steps in a loop
1. Generate random parameters over a given domain using runif
2. Create holder vector for the results
3. Define the attractors and compute the first point

### Intialisation

library(scales)

# set global paramaters
xs=runif(1000000) # vector of length(~4Mb for 5x10^5)
gens=seq(1:12) # number (n) of images to generate

### Main Loop

# main loop
for (j in 1:length(gens)){

# model parameters (~ 4:1 generation ratio!)
a = runif(1,min=1,max=2)*-1
b = runif(1,min=1,max=2)*-1
c = runif(1,min=1,max=2)*-1
d = runif(1,min=1,max=2)*-1

# make holder vectors
res1 <- numeric(length(xs)+1)
res2 <- numeric(length(xs)+1)

# define clifford attractors eq at X=0, Y=0
res1 <- sin(a)-c*cos(a)
res2 <- sin(b)-d*cos(b)

# sequential trajectories derived from previous values
for (i in seq_along(xs)) {
res1[i+1] <- sin(a*res2[i])+c*cos(a*res1[i])
res2[i+1] <- sin(b*res1[i])+d*cos(b*res2[i])
}

}

### Plot a Single Example

# single case plot
plot(res1,res2,type="p",pch=16,asp=1,
cex=0.01,col=alpha("black",0.02),xlim=c(-3,3),
ylim=c(-3,3),axes=FALSE,xlab="",ylab="") ### Iterate N Times as Desired

Substitute and replace the single case plot call above with this code block to generate, and save n number of iterations.

# generate distinct labels for output
lab <- paste0(sample(letters,5),collapse="")

# multiple case plotting
png(paste0("imgs/",lab,".png"),units="px", width=2000, height=2000,res=300)
plot(res1,res2,type="p",pch=16,asp=1,
cex=0.01,col=alpha("black",0.02),xlim=c(-3,3),
ylim=c(-3,3),axes=FALSE,xlab="",ylab="")
dev.off()